<?php
|
|
namespace App\Jobs;
|
|
|
|
use DB;
|
|
use Log;
|
|
use Quartz;
|
|
use p3k\Multipart;
|
|
use App\Jobs\Job;
|
|
use Illuminate\Contracts\Bus\SelfHandling;
|
|
use Illuminate\Contracts\Queue\ShouldQueue;
|
|
use DateTime, DateTimeZone;
|
|
|
|
class TripComplete extends Job implements SelfHandling, ShouldQueue
|
|
{
|
|
private $_dbid;
|
|
private $_data;
|
|
|
|
public function __construct($dbid, $data) {
|
|
$this->_dbid = $dbid;
|
|
$this->_data = $data;
|
|
}
|
|
|
|
public function handle() {
|
|
// echo "Job Data\n";
|
|
// echo json_encode($this->_data)."\n";
|
|
if(!is_array($this->_data)) return;
|
|
|
|
$db = DB::table('databases')->where('id','=',$this->_dbid)->first();
|
|
|
|
Log::info("Starting job for ".$db->name);
|
|
|
|
Log::debug(json_encode($this->_data));
|
|
|
|
if(!$db->micropub_endpoint) {
|
|
Log::info('No micropub endpoint configured for database ' . $db->name);
|
|
return;
|
|
}
|
|
|
|
$qz = new Quartz\DB(env('STORAGE_DIR').$db->name, 'r');
|
|
|
|
// Load the data from the start and end times
|
|
$start = new DateTime($this->_data['properties']['start']);
|
|
$end = new DateTime($this->_data['properties']['end']);
|
|
$results = $qz->queryRange($start, $end);
|
|
$features = [];
|
|
foreach($results as $id=>$record) {
|
|
// Don't include app action tracking data
|
|
if(!property_exists($record->data->properties, 'action')) {
|
|
// Ignore locations with accuracy worse than 5000m
|
|
if(property_exists($record->data->properties, 'horizontal_accuracy') && $record->data->properties->horizontal_accuracy <= 5000) {
|
|
$record->data->properties = array_filter((array)$record->data->properties, function($k){
|
|
// Remove some of the app-specific tracking keys from each record
|
|
return !in_array($k, ['locations_in_payload','desired_accuracy','significant_change','pauses','deferred']);
|
|
}, ARRAY_FILTER_USE_KEY);
|
|
$features[] = $record->data;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build the GeoJSON for this trip
|
|
$geojson = [
|
|
'type' => 'FeatureCollection',
|
|
'features' => $features
|
|
];
|
|
$file_path = tempnam(sys_get_temp_dir(), 'compass');
|
|
file_put_contents($file_path, json_encode($geojson));
|
|
|
|
// If there are no start/end coordinates in the request, use the first and last coordinates
|
|
if(count($features)) {
|
|
if(!array_key_exists('start-coordinates', $this->_data['properties'])) {
|
|
$this->_data['properties']['start-coordinates'] = $features[0]->geometry->coordinates;
|
|
}
|
|
if(!array_key_exists('end-coordinates', $this->_data['properties'])) {
|
|
$this->_data['properties']['end-coordinates'] = $features[count($features)-1]->geometry->coordinates;
|
|
}
|
|
}
|
|
|
|
$startAdr = false;
|
|
if(array_key_exists('start-coordinates', $this->_data['properties'])) {
|
|
// Reverse geocode the start and end location to get an h-adr
|
|
$startAdr = [
|
|
'type' => 'h-adr',
|
|
'properties' => [
|
|
'latitude' => $this->_data['properties']['start-coordinates'][1],
|
|
'longitude' => $this->_data['properties']['start-coordinates'][0],
|
|
]
|
|
];
|
|
Log::info('Looking up start location');
|
|
$start = self::geocode($this->_data['properties']['start-coordinates'][1], $this->_data['properties']['start-coordinates'][0]);
|
|
if($start) {
|
|
$startAdr['properties']['locality'] = $start->locality;
|
|
$startAdr['properties']['region'] = $start->region;
|
|
$startAdr['properties']['country'] = $start->country;
|
|
Log::info('Found start: '.$start->full_name.' '.$start->timezone);
|
|
}
|
|
} else {
|
|
$start = false;
|
|
}
|
|
|
|
$endAdr = false;
|
|
if(array_key_exists('end-coordinates', $this->_data['properties'])) {
|
|
$endAdr = [
|
|
'type' => 'h-adr',
|
|
'properties' => [
|
|
'latitude' => $this->_data['properties']['end-coordinates'][1],
|
|
'longitude' => $this->_data['properties']['end-coordinates'][0],
|
|
]
|
|
];
|
|
Log::info('Looking up end location');
|
|
$end = self::geocode($this->_data['properties']['end-coordinates'][1], $this->_data['properties']['end-coordinates'][0]);
|
|
if($end) {
|
|
$endAdr['properties']['locality'] = $end->locality;
|
|
$endAdr['properties']['region'] = $end->region;
|
|
$endAdr['properties']['country'] = $end->country;
|
|
Log::info('Found end: '.$end->full_name.' '.$end->timezone);
|
|
}
|
|
} else {
|
|
$end = false;
|
|
}
|
|
|
|
// Set the timezone of the dates based on the location
|
|
$startDate = new DateTime($this->_data['properties']['start']);
|
|
if($start && $start->timezone) {
|
|
$startDate->setTimeZone(new DateTimeZone($start->timezone));
|
|
}
|
|
|
|
$endDate = new DateTime($this->_data['properties']['end']);
|
|
if($end && $end->timezone) {
|
|
$endDate->setTimeZone(new DateTimeZone($end->timezone));
|
|
}
|
|
|
|
if($endDate->format('U') - $startDate->format('U') < 15) {
|
|
Log::info("Skipping trip since it was too short");
|
|
return;
|
|
}
|
|
|
|
$params = [
|
|
'h' => 'entry',
|
|
'published' => $endDate->format('c'),
|
|
'trip' => [
|
|
'type' => 'h-trip',
|
|
'properties' => [
|
|
'mode-of-transport' => $this->_data['properties']['mode'],
|
|
'start' => $startDate->format('c'),
|
|
'end' => $endDate->format('c'),
|
|
'route' => 'route.json'
|
|
// TODO: avgpace for runs
|
|
// TODO: avgspeed for bike rides
|
|
// TODO: avg heart rate if available
|
|
]
|
|
]
|
|
];
|
|
|
|
if($startAdr) {
|
|
$params['trip']['properties']['start-location'] = $startAdr;
|
|
}
|
|
if($endAdr) {
|
|
$params['trip']['properties']['end-location'] = $endAdr;
|
|
}
|
|
if(array_key_exists('distance', $this->_data['properties'])) {
|
|
$params['trip']['properties']['distance'] = [
|
|
'type' => 'h-measure',
|
|
'properties' => [
|
|
'num' => round($this->_data['properties']['distance']),
|
|
'unit' => 'meter'
|
|
]
|
|
];
|
|
}
|
|
if(array_key_exists('duration', $this->_data['properties'])) {
|
|
$params['trip']['properties']['duration'] = [
|
|
'type' => 'h-measure',
|
|
'properties' => [
|
|
'num' => round($this->_data['properties']['duration']),
|
|
'unit' => 'second'
|
|
]
|
|
];
|
|
}
|
|
if(array_key_exists('cost', $this->_data['properties'])) {
|
|
$params['trip']['properties']['cost'] = [
|
|
'type' => 'h-measure',
|
|
'properties' => [
|
|
'num' => round($this->_data['properties']['cost'], 2),
|
|
'unit' => 'USD'
|
|
]
|
|
];
|
|
}
|
|
|
|
// If there is trip data, recalculate the distance and duration based on the actual data
|
|
if(count($features)) {
|
|
$startTime = strtotime($features[0]->properties['timestamp']);
|
|
$endTime = strtotime($features[count($features)-1]->properties['timestamp']);
|
|
$duration = $endTime - $startTime;
|
|
$params['trip']['properties']['duration']['type'] = 'h-measure';
|
|
$params['trip']['properties']['duration']['properties']['num'] = $duration;
|
|
$params['trip']['properties']['duration']['properties']['unit'] = 'second';
|
|
Log::debug("Overriding duration to $duration");
|
|
|
|
$points = array_map(function($f){
|
|
return $f->geometry->coordinates;
|
|
}, $features);
|
|
$simple = $this->_ramerDouglasPeucker($points, 0.0001);
|
|
$last = false;
|
|
$distance = 0;
|
|
foreach($simple as $p) {
|
|
if($last) {
|
|
$distance += $this->_gc_distance($p[1], $p[0], $last[1], $last[0]);
|
|
}
|
|
$last = $p;
|
|
}
|
|
if($distance) {
|
|
$params['trip']['properties']['distance']['type'] = 'h-measure';
|
|
$params['trip']['properties']['distance']['properties']['num'] = $distance;
|
|
$params['trip']['properties']['distance']['properties']['unit'] = 'meter';
|
|
Log::debug("Overriding distance to $distance");
|
|
}
|
|
}
|
|
|
|
// echo "Micropub Params\n";
|
|
// print_r($params);
|
|
|
|
$multipart = new Multipart();
|
|
$multipart->addArray($params);
|
|
$multipart->addFile('route.json', $file_path, 'application/json');
|
|
|
|
$httpheaders = [
|
|
'Authorization: Bearer ' . $db->micropub_token,
|
|
'Content-type: ' . $multipart->contentType()
|
|
];
|
|
|
|
Log::info('Sending to the Micropub endpoint: '.$db->micropub_endpoint);
|
|
// Post to the Micropub endpoint
|
|
$ch = curl_init($db->micropub_endpoint);
|
|
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
|
|
curl_setopt($ch, CURLOPT_POST, true);
|
|
curl_setopt($ch, CURLOPT_HTTPHEADER, $httpheaders);
|
|
curl_setopt($ch, CURLOPT_POSTFIELDS, $multipart->data());
|
|
curl_setopt($ch, CURLOPT_HEADER, true);
|
|
$response = curl_exec($ch);
|
|
|
|
Log::info("Done!");
|
|
Log::info($response);
|
|
|
|
// echo "========\n";
|
|
// echo $response."\n========\n";
|
|
//
|
|
// echo "\n";
|
|
}
|
|
|
|
public static function geocode($lat, $lng) {
|
|
$ch = curl_init(env('ATLAS_BASE').'api/geocode?latitude='.$lat.'&longitude='.$lng);
|
|
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
|
|
curl_setopt($ch, CURLOPT_TIMEOUT, 8);
|
|
$response = curl_exec($ch);
|
|
if($response) {
|
|
return json_decode($response);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// TODO: move this to a library p3k/Geo
|
|
|
|
|
|
// http://www.loughrigg.org/rdp/
|
|
|
|
//The author has placed this work in the Public Domain, thereby relinquishing all copyrights.
|
|
//You may use, modify, republish, sell or give away this work without prior consent.
|
|
//This implementation comes with no warranty or guarantee of fitness for any purpose.
|
|
|
|
//=========================================================================
|
|
//An implementation of the Ramer-Douglas-Peucker algorithm for reducing
|
|
//the number of points on a polyline
|
|
//see http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
|
|
//=========================================================================
|
|
|
|
//Finds the perpendicular distance from a point to a straight line.
|
|
//The coordinates of the point are specified as $ptX and $ptY.
|
|
//The line passes through points l1 and l2, specified respectively with their
|
|
//coordinates $l1x and $l1y, and $l2x and $l2y
|
|
public function _perpendicularDistance($ptX, $ptY, $l1x, $l1y, $l2x, $l2y)
|
|
{
|
|
$result = 0;
|
|
if ($l2x == $l1x)
|
|
{
|
|
//vertical lines - treat this case specially to avoid divide by zero
|
|
$result = abs($ptX - $l2x);
|
|
}
|
|
else
|
|
{
|
|
$slope = (($l2y-$l1y) / ($l2x-$l1x));
|
|
$passThroughY = (0-$l1x)*$slope + $l1y;
|
|
$result = (abs(($slope * $ptX) - $ptY + $passThroughY)) / (sqrt($slope*$slope + 1));
|
|
}
|
|
return $result;
|
|
}
|
|
|
|
//RamerDouglasPeucker
|
|
//Reduces the number of points on a polyline by removing those that are closer to the line
|
|
//than the distance $epsilon.
|
|
//The polyline is provided as an array of arrays, where each internal array is one point on the polyline,
|
|
//specified by easting (x-coordinate) with key "0" and northing (y-coordinate) with key "1".
|
|
//It is assumed that the coordinates and distance $epsilon are given in the same units.
|
|
//The result is returned as an array in a similar format.
|
|
//Each point returned in the result array will retain all its original data, including its E and N
|
|
//values along with any others.
|
|
public function _ramerDouglasPeucker($pointList, $epsilon)
|
|
{
|
|
if(count($pointList) == 0)
|
|
return array();
|
|
|
|
// Find the point with the maximum distance
|
|
$dmax = 0;
|
|
$index = 0;
|
|
$totalPoints = count($pointList);
|
|
for ($i = 1; $i < ($totalPoints - 1); $i++)
|
|
{
|
|
$d = $this->_perpendicularDistance($pointList[$i][0], $pointList[$i][1],
|
|
$pointList[0][0], $pointList[0][1],
|
|
$pointList[$totalPoints-1][0], $pointList[$totalPoints-1][1]);
|
|
|
|
if ($d > $dmax)
|
|
{
|
|
$index = $i;
|
|
$dmax = $d;
|
|
}
|
|
}
|
|
|
|
$resultList = array();
|
|
|
|
// If max distance is greater than epsilon, recursively simplify
|
|
if ($dmax >= $epsilon)
|
|
{
|
|
// Recursive call
|
|
$recResults1 = $this->_ramerDouglasPeucker(array_slice($pointList, 0, $index + 1), $epsilon);
|
|
$recResults2 = $this->_ramerDouglasPeucker(array_slice($pointList, $index, $totalPoints - $index), $epsilon);
|
|
|
|
// Build the result list
|
|
$resultList = array_merge(array_slice($recResults1, 0, count($recResults1) - 1),
|
|
array_slice($recResults2, 0, count($recResults2)));
|
|
}
|
|
else
|
|
{
|
|
$resultList = array($pointList[0], $pointList[$totalPoints-1]);
|
|
}
|
|
// Return the result
|
|
return $resultList;
|
|
}
|
|
|
|
function _gc_distance($lat1, $lng1, $lat2, $lng2) {
|
|
return ( 6378100 * acos( cos( deg2rad($lat1) ) * cos( deg2rad($lat2) ) * cos( deg2rad($lng2) - deg2rad($lng1) ) + sin( deg2rad($lat1) ) * sin( deg2rad($lat2) ) ) );
|
|
}
|
|
|
|
|
|
}
|