| @ -0,0 +1,93 @@ | |||
| <?php | |||
| namespace p3k\geo; | |||
| //RamerDouglasPeucker | |||
| //Reduces the number of points on a polyline by removing those that are closer to the line | |||
| //than the distance $epsilon. | |||
| //The polyline is provided as an array of arrays, where each internal array is one point on the polyline, | |||
| //specified by easting (x-coordinate) with key "0" and northing (y-coordinate) with key "1". | |||
| //It is assumed that the coordinates and distance $epsilon are given in the same units. | |||
| //The result is returned as an array in a similar format. | |||
| //Each point returned in the result array will retain all its original data, including its E and N | |||
| //values along with any others. | |||
| function ramerDouglasPeucker($pointList, $epsilon) | |||
| { | |||
| if(count($pointList) == 0) | |||
| return array(); | |||
| // Find the point with the maximum distance | |||
| $dmax = 0; | |||
| $index = 0; | |||
| $totalPoints = count($pointList); | |||
| for ($i = 1; $i < ($totalPoints - 1); $i++) | |||
| { | |||
| $d = $this->_perpendicularDistance($pointList[$i][0], $pointList[$i][1], | |||
| $pointList[0][0], $pointList[0][1], | |||
| $pointList[$totalPoints-1][0], $pointList[$totalPoints-1][1]); | |||
| if ($d > $dmax) | |||
| { | |||
| $index = $i; | |||
| $dmax = $d; | |||
| } | |||
| } | |||
| $resultList = array(); | |||
| // If max distance is greater than epsilon, recursively simplify | |||
| if ($dmax >= $epsilon) | |||
| { | |||
| // Recursive call | |||
| $recResults1 = $this->_ramerDouglasPeucker(array_slice($pointList, 0, $index + 1), $epsilon); | |||
| $recResults2 = $this->_ramerDouglasPeucker(array_slice($pointList, $index, $totalPoints - $index), $epsilon); | |||
| // Build the result list | |||
| $resultList = array_merge(array_slice($recResults1, 0, count($recResults1) - 1), | |||
| array_slice($recResults2, 0, count($recResults2))); | |||
| } | |||
| else | |||
| { | |||
| $resultList = array($pointList[0], $pointList[$totalPoints-1]); | |||
| } | |||
| // Return the result | |||
| return $resultList; | |||
| } | |||
| // http://www.loughrigg.org/rdp/ | |||
| //The author has placed this work in the Public Domain, thereby relinquishing all copyrights. | |||
| //You may use, modify, republish, sell or give away this work without prior consent. | |||
| //This implementation comes with no warranty or guarantee of fitness for any purpose. | |||
| //========================================================================= | |||
| //An implementation of the Ramer-Douglas-Peucker algorithm for reducing | |||
| //the number of points on a polyline | |||
| //see http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm | |||
| //========================================================================= | |||
| //Finds the perpendicular distance from a point to a straight line. | |||
| //The coordinates of the point are specified as $ptX and $ptY. | |||
| //The line passes through points l1 and l2, specified respectively with their | |||
| //coordinates $l1x and $l1y, and $l2x and $l2y | |||
| function perpendicularDistance($ptX, $ptY, $l1x, $l1y, $l2x, $l2y) | |||
| { | |||
| $result = 0; | |||
| if ($l2x == $l1x) | |||
| { | |||
| //vertical lines - treat this case specially to avoid divide by zero | |||
| $result = abs($ptX - $l2x); | |||
| } | |||
| else | |||
| { | |||
| $slope = (($l2y-$l1y) / ($l2x-$l1x)); | |||
| $passThroughY = (0-$l1x)*$slope + $l1y; | |||
| $result = (abs(($slope * $ptX) - $ptY + $passThroughY)) / (sqrt($slope*$slope + 1)); | |||
| } | |||
| return $result; | |||
| } | |||
| // Calculate the Great Circle distance between two points, in meters | |||
| function gc_distance($lat1, $lng1, $lat2, $lng2) { | |||
| return ( 6378100 * acos( cos( deg2rad($lat1) ) * cos( deg2rad($lat2) ) * cos( deg2rad($lng2) - deg2rad($lng1) ) + sin( deg2rad($lat1) ) * sin( deg2rad($lat2) ) ) ); | |||
| } | |||